Sulfur-Doped TiO2: Structure and Surface Properties

نویسندگان

  • Sara Cravanzola
  • Federico Cesano
  • Fulvio Gaziano
  • Domenica Scarano
  • Alberto Naldoni
چکیده

A comprehensive study on the sulfur doping of TiO2, by means of H2S treatment at 673 K, has been performed in order to highlight the role of sulfur in affecting the properties of the system, as compared to the native TiO2. The focus of this study is to find a relationship among the surface, structure, and morphology properties, by means of a detailed chemical and physical characterization of the samples. In particular, transmission electron microscopy images provide a simple tool to have a direct and immediate evidence of the effects of H2S action on the TiO2 particles structure and surface defects. Furthermore, from spectroscopy analyses, the peculiar surface, optical properties, and methylene blue photodegradation test of S-doped TiO2 samples, as compared to pure TiO2, have been investigated and explained by the effects caused by the exchange of S species with O species and by the surface defects induced by the strong H2S treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The synthesis of nitrogen/sulfur co-doped TiO2 nanocrystals with a high specific surface area and a high percentage of {001} facets and their enhanced visible-light photocatalytic performance

Nitrogen/sulfur co-doped anatase TiO2 nanocrystals with a high specific surface area and a high percentage of {001} facets were synthesized by a solvent-thermal process followed by the calcination with thiourea at an optimum heat treatment temperature. Under current experimental conditions, the optimum heat treatment temperature was found at 300°C, which successfully introduced nitrogen and sul...

متن کامل

W-doped nanoporous TiO2 for high performances sensing material toward acetone gas

W-doped TiO2 with nanoporous structure was synthesized by a one-step low temperature hydrothermal method using TiOSO4 and (NH4)6H2W12O40•xH2O as titanium and tungsten sources. Structure, morphology, specific surface area and chemical state of samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). W-doped nanoporo...

متن کامل

High-rate lithium storage of anatase TiO2 crystals doped with both nitrogen and sulfur.

Anatase TiO2 nanocrystals doped with nitrogen and sulfur, where substitutional N and S atoms for lattice O, respectively, locate in the bulk and the surface layer of the crystals, were designed and prepared. As a result of remarkably lowered electronic resistance, the N/S doped TiO2 shows a superior high rate lithium storage capability to that of reference TiO2 nanocrystals, though the former h...

متن کامل

Visible light induced photocatalytic activity of sulfur doped hollow TiO2 nanoparticles, synthesized via a novel route.

Water pollution by organic pollutants has been a growing global problem in recent years, for which there is a great demand of efficient technologies for wastewater treatment. Remediation of water by photocatalytic oxidation has several advantages over adsorption or any other conventional techniques. This study reports a easy synthesis technique of a sulfur doped hollow TiO2 nanocatalyst for pho...

متن کامل

Room Temperature Synthesis of N-doped Urchin-like Rutile TiO2 Nanostructure With Enhanced Photocatalytic Activity Under Sunlight

We report the synthesis of nitrogen-doped urchin-like rutile TiO2 nanostructure at room temperature without further heat treatment. The process was operated through hydrolysis of Ti(OC4H9)4 employing the direct amination of the product. The samples characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy and Brunaue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017